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Abstract. The Br NMR in the triangular-lattice antiferromagnetic CsMnBr3 is investigated in
the ordered state at low temperatures. Two distinct peaks of the Br NMR spin-echo spectrum
were observed at 36.0±0.5 MHz and 43.0±0.5 MHz accompanied by a broad signal ranging from
34 to 55 MHz in zero field. The peak frequencies are independent of temperature and the ratio of
the frequencies is the same as that of the quadrupole moments of81Br and79Br. This suggests
that the quadrupole resonance of Br is perturbed by the distribution of the internal magnetic field.
Theoretical results obtained under the assumption that the Mn spins have disordered structure
in the c-plane due to the frustration effect agree with the experimental data.

1. Introduction

The antiferromagnetic planar (XY -) model of a triangular lattice is one of the two-
dimensional (2D) frustrated spin systems that exhibit many types of phase structure. From
the theoretical point of view, the magnetic phase transition is closely related to the symmetry
breaking of the helicity or chirality (Z2) in addition to theXY -symmetry (S1), and the
phase transition is similar to those of Ising and Kosterlitz–Thouless systems [1–3]. In zero
external field, both symmetry breakings occur at the same temperature, and the common
feature transition is a multicritical point describing the confluence of two universalities.

CsMnBr3 crystallizes into a hexagonal lattice, with space groupP 63/mmc, and with
lattice parametersa = 7.61 Å and c = 6.52 Å [4], as illustrated in figure 1. The
antiferromagnetic superexchange interaction (J0 = 0.88 meV) between the neighbouring
Mn spins along thec-axis is about 460 times stronger than that in theab-plane (J =
0.0019 meV) [5–6]. For this reason, the Mn spins form infinite linear chains along thec-
axis. At low temperatures, an in-plane anisotropy (D = 0.014 meV) mainly due to dipolar
interaction restricts the magnetic moments in theab-plane. Therefore, the system of the Mn
spins in this material is approximately stacked into a triangular antiferromagnetXY -lattice,
and the Mn spins frustrate the formation of a collinear antiferromagnetic structure. Below
8.31 K, it undergoes three-dimensional (3D) ordering. The spin configuration determined
by neutron diffraction (ND) experiments is one in which the Mn spins in theab-plane are
rotated by 120◦. However, no one has yet determined the direction of Mn spins in relation
to the crystallographic axes. In order to determine the spin orientation, we have measured
the Br NMR spectrum.
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Figure 1. The unit cell of CsMnBr3.

2. Experimental procedure and results

Single crystals of CsMnBr3 were grown by the Bridgeman method [7]. The NMR spectra
were taken with an incoherent pulsed NMR apparatus with an operating frequency ranging
from 30 to 80 MHz. The NMR spectra were taken at zero field with the temperature ranging
from 3.0 to 4.2 K. The resonance spectrum of the Br NMR in a single crystal of CsMnBr3

was measured by the spin-echo method. In this measurement, the duration of the applied
rf wave was taken to be shorter than that for the optimum intensity [8].

The Br NMR results of CsMnBr3 are shown in figure 2. Figure 2(a) shows the Br NMR
spectrum at 4.2 K, and figure 2(b) shows that at 3.0 K in this experiment the rf field was
applied parallel to thec-axis. The spectrum is in the perpendicular case almost the same
as that in figure 2. Distinct peaks are observed at 36.0 ± 0.5 MHz and 43.0 ± 0.5 MHz,
and the measured spectrum spreads broadly from 34 to 55 MHz, although the specimen
is a single crystal. Because the ratio of the two frequencies is the same as that of the
quadrupole moments of81Br and 79Br, we can assign the lower-frequency part of the
spectrum as corresponding to the81Br resonance and the higher part as corresponding to the
79Br resonance. The intensities of the two peaks are nearly equal; this reflects the natural
abundance ratio of 50.57%(79Br)/49.43%(81Br) ' 1.

The temperature independence of the peak frequencies suggests that the observed
resonance frequencies of spin-echo signals are determined mainly by the electric quadrupole
interaction between the Br nucleus and surrounding ions. This broad width of the spectrum
is suggested to be originating from the distribution of the internal field at the Br nuclear
site.

3. Analysis and discussion

To analyse the NMR spectra, it is necessary to calculate the nuclear Hamiltonian of the Br
nucleus (I = 3/2), which can be written as a sum of the pure quadrupole Hamiltonian and
the Zeeman Hamiltonian:

H = e2qQ

4I (2I − 1)
[3I 2

z − I (I + 1) + η(I 2
x − I 2

y )] − γ h̄(B · I) (1)
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Figure 2. Spectra (a) and (b) show the Br NMR spin-echo spectra at 4.2 K and 3.0 K,
respectively.

where thex-, y-, and z-axis are taken as the principal axes of electric field gradientVij ,
e := elementary electric charge,q := Vzz/e, η := (Vxx − Vyy)/Vzz, Q := the electric quad-
rupole moment of the Br nucleus, andγ := the gyromagnetic constant of the Br nuclear
magnetic moment. The elements of electric field gradient (EFG) were calculated under an
assumption that the real charge distribution can be replaced by a set of point charges. The
contribution of about 2× 105 atoms within a sphere of radius 60̊A to the EFG is taken
into account, and the calculated principal values at the Br(4) site in figures 1 and 3 are
V ′

xx/e = 1.12× 10−25 (cm−3), V ′
yy/e = 2.02× 10−26 (cm−3) andV ′

zz/e = −1.32× 10−25

(cm−3). Figure 3 represents the projection of Br and Mn atoms on thec-plane, andy
and z stand for the crystallographicc-axis anda-axis, respectively. As inferred from the
position of the Br nucleus, the principal value of the EFG along thec-direction is small and
the asymmetry parameterη is fairly large, |η| = 0.69. It is widely known that the wave
function of inner-core electrons of the Br atom is deformed by an electric field. TheVij ,
which are determined by the experiment, can be expressed asVij = V ′

ij (1− γ∞), whereγ∞
is called Sternheimer’s antishielding factor and is isotropic [9]. Therefore, it is assumed
that the asymmetry parameterη is fixed, andVzz is one of the adjustable parameters to be
determined by experiment.



4066 Xun Xu et al

Figure 3. The projection of Br and Mn atoms onto theab-plane. The Br atoms 1–6 correspond
to those in figure 1. On Br(4), the principal axes of the field gradient tensor are thex-, y- and
z-axis.

In the Zeeman interaction, the internal magnetic field at the Br site is a sum of the
dipolar field and the transferred hyperfine field. In calculating the dipolar field, the magnetic
moments of Mn2+ ions are replaced by point dipole moments. At the Br site in CsMnBr3,
the point dipole field was calculated as a sum of the dipole fields generated by the Mn spins
(S) in a sphere of radius 60̊A with S reduced by 34% [10]. The resulting field at the Br
site is about 0.08 T, which is too small to explain the experimental data.

The transferred hyperfine interaction is usually expressed as a spherically symmetrical
term in the nuclear Hamiltonian. The two Mn spins nearest to the Br nucleus are coupled
antiparallel to each other because of the strong antiferromagnetic interaction along thec-
axis. In this case, the field produced by the symmetrical interaction is cancelled. The field
produced by the anisotropic transferred hyperfine interaction is calculated from the following
model: the Hamiltonian of the hyperfine interaction between the electronic spinS and the
nuclear spinI is written as

∑
SiAij Ij whereAij are the coupling coefficients, which are

second-rank Cartesian tensors. Tensors are reducible with respect to transformations of the
coordinate system such as rotation and inversion [11]; therefore, tensors can be expressed as
linear combinations of irreducible tensors as scalar, pseudo-vector and symmetric second-
order (pseudo-dipolar) tensors. The transferred hyperfine interaction originates from the
overlap of d-electronic wave functions of the magnetic Mn2+ ion with the neighbouring
diamagnetic Br− ion [12]. Therefore, the field is inversely proportional to the distancer

between two atoms. When theAij -coefficients are expanded in a power series ofr, the
pseudo-vector term must be zero due to the antisymmetry. As a result, the coefficientsTij

of the anisotropic transferred hyperfine interaction are given by

Tij = 1

2

[
Aij + Aji − 2

3
A(r)δij

]
= f (r)

(
xixj − 1

3
δij

)
(2)

whereA(r) = 1
3(Axx + Ayy + Azz), f (r) is a function ofr, andδij is the Kronecker delta.

Becausef (r) decreases rapidly as a function ofr, only the contribution of the nearest Mn2+

ions to the internal field is taken into consideration. Here, we use the maximum internal
field B0 instead off (r), theB0 which is one of the adjustable parameters to be determined
by experiment.

In order to examine the magnetic structure theoretically, we assumed the following two
models, accomplished by computer simulation.

Firstly, we supposed a model in which the Mn spins are coupled antiferromagnetically
along thec-axis and point in various directions in 3D; in this case, the Mn spins are in the
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3D random state. The resonance frequencies and the intensities of79Br were calculated in
the following way.

(i) The azimuth and the latitude of the direction of the Mn spin were determined
independently by random numbers (but the word random does not fully qualify the random
number: a set of random numbers between 0 and 2π is used for the azimuth angleϕ, and
a set of random numbers between−1 and+1 is used for cosθ , whereθ is the latitude
angle).

(ii) The internal magnetic fieldB at the Br site was calculated from equation (2) with
these angles, where the maximum internal fieldB0 is assumed to be equal to 0.3 T.

(iii) Assuming e2qQ/h = 88 MHz and |η| = 0.69, we calculated the eigenvalues,
the eigenfunctions of the nuclear Hamiltonian, the resonance frequency and the intensity
of the 79Br NMR. The many bars in figure 4(a) show the resonance of79Br, where only
one hundred spins are taken into account because of the computer storage. The calculated
results, unfortunately, do not reproduce the experimental data.

Figure 4. (a) Calculated resonance lines of79Br NMR with a model in which the spins are
in a three-dimensional random state. (b) Calculated resonance lines of79Br NMR with the
two-dimensional spin arrangement produced by Monte Carlo simulation.
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Figure 5. (a) An illustration by the Monte Carlo simulation of spins in one of the planes of the
stacked triangular-latticeXY -antiferromagnet (26× 26 spins× 10 planes). (b) The method for
obtaining (b) from (a) is as follows: first, we number the spins in (a) from the left to the right
(in (a) the first five spins are numbered); then, we rotate theN th spin by(N − 1) × 120◦. That
is, the direction of spin No 1 is not changed. That of spin No 2 is increased by 120◦. Spin No
3 is rotated by 240◦, or −120◦, and so on. After rotating the spins in this manner, we have (b).

As the second model we take one where the Mn spins are coupled antiferromagnetically
along thec-axis and point to various directions in thec-plane. We have performed a
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Monte Carlo simulation using a configuration of the actual crystal. The model is a stacked
triangular-lattice antiferromagnet with a finite size (26× 26 spins and 10 planes). The
calculation is based on the Metropolis method applied to the spin system of the model,
where the exchange parameters equal those of CsMnBr3 but the Mn spins lie in thec-plane.
We have assumed that the temperature can be expressed as 0.001× 2J0S

2/κB whereκB

is the Boltzmann constant, and the number of iterations is about 70 millions/spin. The
calculated results are shown in figure 5(a).

Figure 6. The theoretically calculated spectrum of Br NMR in zero external field.

The method for obtaining figure 5(b) from figure 5(a) is as follows. First, we number the
spins in figure 5(a) from the left to the right and from the top to the bottom. (In figure 5(a)
the first five spins are numbered.) Then, we rotate theN th spin by(N − 1) × 120◦. After
rotating the spins in this manner, we have figure 5(b). The configuration of spins in figure
5(b) is just the same as that in figure 5(a). Entire areas of figure 5(b) can be separated into
region A containing trains of spins and region B including Y-like combinations of spins.
Although the spins in regions A and B are oriented in different fashions, we can see that
the total system in thec-plane is in the disordered state.

Taking the second model, we calculated the79Br NMR spectrum via the following
scheme.

(i) The internal field at the Br site is calculated with the angle between the spin and
the b-axis in figure 5(a), and withB0 = 0.51 T, which is estimated from the separation
between the maximum and the minimum frequencies of the experimental data. Here, the
internal field is parallel to thec-axis from equation (2).

(ii) Assuming |η| = 0.69, the principal value of the EFG is determined by the lowest
frequency of the spectrum, that is,e2qQ/h = 88 MHz.

(iii) Using these parameters, we calculated the resonance frequency and the intensity
of the 79Br NMR. The calculated results are shown in figure 4(b), where bars show the
resonance; and the bars are dense in the vicinity of the lowest frequency.

The intensity of the spectrum depends on the bar density; however, we could not
understand the convolution directly from figure 4(b). It is noted that, in our experiment,
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the NMR spectra are taken by an incoherent pulsed NMR method. This means that we can
employ a set of Gaussian functions, whose common width is 1/1t (1t is the duration of
application of the rf wave, approximately equal to 1.0µs). Figure 6 illustrates the simulation
results, and our NMR data support such a complicated structure. The ND experimental data
are also consistent with this figure because it reflects the regular structure in the range of
the coherence length of the ND.

4. Conclusions

In conclusion, the broad width of the Br NMR spectrum is considered to be arising from
the distribution of the internal field at the Br site due to the frustration effects. We have
shown that CsMnBr3 has a disordered magnetic structure in two dimensions, namely, that
the spins are coupled antiferromagnetically along thec-axis and are pointing in various
directions in thec-plane. This disordered state may vanish close to the ground state. In
order to investigate the ground state further, we need to perform NMR experiments at lower
temperature.
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